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NWMO Background Papers

NWMO has commissioned a series of background papers which present concepts and
contextual information about the state of our knowledge on important topics related to the
management of radioactive waste.  The intent of these background papers is to provide input to
defining possible approaches for the long-term management of used nuclear fuel and to
contribute to an informed dialogue with the public and other stakeholders.  The papers currently
available are posted on NWMO’s web site.  Additional papers may be commissioned.

The topics of the background papers can be classified under the following broad headings:

1. Guiding Concepts – describe key concepts which can help guide an informed dialogue
with the public and other stakeholders on the topic of radioactive waste management.
They include perspectives on risk, security, the precautionary approach, adaptive
management, traditional knowledge and sustainable development.

2. Social and Ethical Dimensions - provide perspectives on the social and ethical
dimensions of radioactive waste management.  They include background papers
prepared for roundtable discussions.

3. Health and Safety – provide information on the status of relevant research,
technologies, standards and procedures to reduce radiation and security risk associated
with radioactive waste management.

4. Science and Environment – provide information on the current status of relevant
research on ecosystem processes and environmental management issues.  They include
descriptions of the current efforts, as well as the status of research into our
understanding of the biosphere and geosphere.

5. Economic Factors - provide insight into the economic factors and financial
requirements for the long-term management of used nuclear fuel.

6. Technical Methods - provide general descriptions of the three methods for the long-
term management of used nuclear fuel as defined in the NFWA, as well as other possible
methods and related system requirements.

7. Institutions and Governance - outline the current relevant legal, administrative and
institutional requirements that may be applicable to the long-term management of spent
nuclear fuel in Canada, including legislation, regulations, guidelines, protocols,
directives, policies and procedures of various jurisdictions.

Disclaimer
This report does not necessarily reflect the views or position of the Nuclear Waste Management
Organization, its directors, officers, employees and agents (the “NWMO”) and unless otherwise
specifically stated, is made available to the public by the NWMO for information only.  The
contents of this report reflect the views of the author(s) who are solely responsible for the text
and its conclusions as well as the accuracy of any data used in its creation.  The NWMO does
not make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information disclosed, or represent that the use of
any information would not infringe privately owned rights.  Any reference to a specific
commercial product, process or service by trade name, trademark, manufacturer, or otherwise,
does not constitute or imply its endorsement, recommendation, or preference by NWMO.
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EXECUTIVE SUMMARY 
 
Canada is currently weighing its options for managing spent fuel from its nuclear power 
stations.  The transportation of spent fuel is being considered as part of this process.   
 
Spent fuel could be transported from nuclear reactor sites to a central storage or disposal 
facility in Canada.  In addition to road and rail transportation, it is conceivable that spent 
fuel could be transported by ships if Canada decides to reprocess its spent fuel overseas, 
to move spent fuel from one side of the country to the other, or to ship it via internal 
waterways. 
 
Radioactive material is categorized as hazardous.  While shipments of radioactive 
material account for a small proportion of total hazardous material shipments, they are 
transported in large numbers every day around the world, including in Canada.   
 
The International Atomic Energy Agency is a United Nations agency with 137 member 
states.  It has set the standards by which spent nuclear fuel is transported.  The IAEA 
established a safety philosophy in the 1960s whereby the package in which nuclear 
material is transported is designed to provide protection to workers, the public and 
environment in severe accident conditions. 
 
Spent fuel casks are massive structures typically manufactured from forged steel.  In line 
with IAEA standards, these packages must meet a series of stringent regulations covering 
impact, fire and immersion.  Because of the strength of these casks, spent fuel has been 
transported safely for over forty years. 
 
Ships that move spent fuel are separately regulated by the International Maritime 
Organization, a United Nations body, which sets standards for their design.  This 
provides an additional layer of protection for sea shipments of spent fuel.   
 
While Canada has so far moved only a limited number of spent fuel casks, there is broad 
international experience stretching back for forty years.  This experience covers accidents 
and incidents that have happened.  It also includes technical studies that have examined a 
range of accident scenarios, including analyses of what would have happened if spent 
fuel had been transported during some of the most severe hazardous material accidents.  
 
Studies have also been conducted to evaluate the level of risk associated with 
transportation of spent fuel.  These studies have consistently shown that the levels of risk 
are very low whether spent fuel is transported by land or sea.   
 
The IAEA has also set standards for the physical protection of nuclear material and 
produced guidelines for member states to plan for and respond to emergency situations.   
 
Canada will have greater flexibility in dealing with its spent fuel if it has a transport 
system in place.  This will allow optimum choices to be made for storage or disposal 
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alternatives.  In addition to the technical issues, one of the additional factors for Canada 
to consider is the provision of public information. 
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1 INTRODUCTION 
 
This paper has been prepared with the general reader in mind.  While the paper contains 
some technical information, the aim has been to use as little technical language as 
possible.   
 
This paper is a review of fundamental issues and key considerations related to the 
transportation of spent nuclear fuel.  Readers who are relatively new to this subject and 
who have an interest in learning more about the transportation of nuclear material should 
find the information contained in this paper to be a good introduction to some of the key 
facts, concepts and issues.  However, this is not intended to be a definitive, 
comprehensive, in-depth technical study and readers are urged to review some of the 
documents referenced in this paper if they require more technical information.   
 
Discussion surrounding the safety of nuclear transport often focuses around the issue of 
“risk”.  The subject is covered in this paper but readers who wish to have more 
information about risk assessments can also refer to a large number of books and other 
publications.  I would particularly recommend “Technological Risk” and “Why Flip a 
Coin?” by H.W. Lewis. 
 
Readers can also obtain a good deal of useful information about nuclear transportation 
from the World Nuclear Transport Institute (www.wnti.co.uk).   
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2 TRANSPORTATION OF HAZARDOUS MATERIALS 
 
Millions of shipments of hazardous materials are transported throughout the world every 
year.  In the United States alone, hazardous materials traffic levels now exceed 800,000 
shipments per day and 300 million per year.  In Canada, three million tonnes of 
dangerous goods are transported every year and there are 27 million shipments of 
hazardous waste.   
  
Hazardous shipments of liquids, gases or solids may be transported by road, rail, sea and 
air, and may have flammable, toxic or corrosive properties.  In Canada, hazardous 
shipments take place within a legal framework set out in the Transportation of Dangerous 
Goods Act (1992) which requires specific safety procedures.  Other nations have adopted 
similar regulations to govern movements of hazardous materials to ensure that they are 
carried out safely.  The transportation of nuclear materials, along with other aspects of the 
nuclear industry, is regulated by the Canadian Nuclear Safety Commission (CNSC).    
 
When shipments cross international boundaries they may be subject to regulations from 
more than one nation.  International shipping standards have therefore been developed by 
nations working under the auspices of international bodies, such as the International 
Maritime Organization (IMO), and these have been incorporated into national laws by 
individual governments.  The International Maritime Dangerous Goods Code (IMDG 
Code) of the IMO is an important document in this regard because it has harmonized 
standards for the shipping of hazardous material around the globe. The objective of the 
IMDG Code is “to enhance the safe transport of dangerous goods while facilitating the 
free unrestricted movement of such goods.” 
 
The IMDG code has categorized sea shipments of hazardous materials into the following 
classes.  (The order of the classes does not denote the degree of danger).  The same 
categories are used by transportation regulators in most countries around the world, 
including Transport Canada, Canada’s transport department.   
 
Class 1: Explosives 
Class 2: Gases 
Class 3: Flammable liquids 
Class 4: Flammable solids 
Class 5: Oxidizing substances and organic peroxides 
Class 6: Toxic and infectious substances 
Class 7: Radioactive material 
Class 8: Corrosive substances 
Class 9: Miscellaneous dangerous substances and articles 
 
In each case, the material must be packed and consigned in a particular manner.  The 
distinctive labeling system for hazardous material, for example, has become an important 
internationally recognizable system for quickly communicating the properties of a 
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package and understanding the precautions that should be taken in normal and accident 
situations.   
 
The IMDG Code lists nineteen substances that are prohibited from being transported 
because they are “liable to explode, dangerously react, produce a flame or dangerous 
evolution of heat or dangerous emission of toxic, corrosive or flammable gases or vapors 
under normal conditions normally encountered in transport.”  None of the prohibited 
substances are related to the transportation of spent fuel. 
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3 INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) 
 
The IAEA is a United Nations agency headquartered in Vienna, Austria.  It was 
established on 23 October 1956 by the Conference on the Statute of the IAEA and 
entered into force on 29 July 1957.  Its objective is “to accelerate and enlarge the 
contribution of atomic energy to peace, health and prosperity throughout the world.”  As 
of November 2003, the IAEA had 137 member countries.   
 
The IAEA has established regulations to protect workers from the effects of radiation and 
to protect the public and environment from the effects of radiation when radioactive 
material is being transported. It has also produced recommendations on other aspects of 
the nuclear industry, such as the physical protection of nuclear material and emergency 
response arrangements.   
 
The IAEA transport regulations are documented in “Regulations for the Safe Transport of 
Radioactive Material”.  These regulations are widely considered to be the basic 
international standards for the transportation of radioactive material.  The original 
regulations were produced by nuclear and transportation experts from IAEA member 
countries and published in 1961.  The regulations are under constant review to ensure that 
they are kept up to date with modern requirements and knowledge gained from any actual 
incidents or accidents – whether or not these accidents involved nuclear materials.  
Revisions to the regulations have been issued in 1964, 1967, 1973, 1985 and 1996.   
 
Since the commercial nuclear industry was new and limited in size when the regulations 
were first produced, the IAEA was able to establish a specific safety philosophy for 
nuclear shipments.  This philosophy is that safety is provided by the package in which the 
material is being transported.   This means that protection provided by the mode of 
transport in an accident – be it a truck, rail wagon, ship or airplane – is additional and not 
essential to the overall protection of the public and the environment.  In addition to 
requiring containment of the radioactive contents of the package, the package provides 
protection by controlling external radiation levels, preventing criticality and preventing 
damage caused by heat.  Because the packages for spent fuel shipments have a passive 
design, safety is not dependent on human actions by operators or on external systems.   
 
The IAEA’s unique safety approach can be the cause of public misunderstandings.  
Members of the public may come to equate the risks of transporting nuclear materials 
with the effects of oil spills or traffic accidents, without understanding that the protection 
in nuclear transportation is provided by the package and that the protection provided by 
the mode of transport is additional, not primary.   
 
Non-nuclear hazardous materials may be packaged in a particular way, but the packages 
are not designed according to the same philosophy.  The transportation of other 
hazardous materials, such as oil and flammable gases, relies largely on the mode of 
transport for protection.  Even in the case of oil tankers that are protected by double hulls, 
the aim of this extra protection is to provide pollution control (i.e. to avoid or minimize 
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spills from a grounding) rather than to protect the vessel from sinking in the event of a 
collision.  Thus the double hulls are relatively narrow.  
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4 REGULATIONS FOR PACKAGES AND SHIPS 
 
In spite of good planning and preventive measures (i.e. procedures, training, etc.), 
accidents can happen when hazardous materials are transported.  The framework under 
which nuclear materials are transported does not ensure that accidents will not happen, 
but it is designed to ensure that the public, workers and the environment are properly 
protected in normal and accident situations.   
 
International Atomic Energy Agency 
 
Nuclear materials vary in size, form and levels of radioactivity.  The IAEA therefore has 
established a graded approach, requiring different packaging requirements for different 
categories of nuclear material.  Most shipments of radioactive material involve the first 
three categories.  The packages are: 
 

• “Excepted” packages, used for low activities of radionuclides.   
• Industrial Packages (such as drums), used for bulk material transport.   
• Type A packages, designed for normal conditions of transport of radionuclides 

with activity below a defined level 
• Type B packages, designed to withstand severe accident conditions, to carry 

material of defined levels of activity such as spent fuel 
• Type C packages, designed to withstand enhanced severe accident conditions 

such as those experienced in aircraft accidents 
 
Spent nuclear fuel is transported internationally by road, rail and sea in large Type B 
casks.  Many shipments involve more than one of these modes.  Spent nuclear fuel is not 
transported by air, although other radioactive materials such as medical isotopes are 
transported in aircraft. 
 
The Type B casks are designed and built by private or state-owned companies and 
licensed in the nations where they are transported.  The casks are expensive to construct 
(costing more than $1 million, depending on the size and carrying capacity of the cask) 
and are cleaned and re-used after the spent fuel has been removed.  Operators employ 
Quality Assurance procedures to ensure that the casks maintain their design 
specifications and that staff are properly trained to handle them.  Casks used within 
Canada must be licensed by the Canadian Nuclear Safety Commission (CNSC), an 
independent agency of the Government of Canada which regulates the use of nuclear 
material.  If spent fuel is transported overseas, these casks will also need to be licensed in 
the other countries in which they are transported.  Casks licensed for use overseas would 
have to be licensed by the CNSC before they can be used in Canada.  The licensing 
process typically involves national regulators authenticating that the casks meet the IAEA 
requirements.  Only those registered by the CNSC to use a certified package can transport 
nuclear substances and they can only transport those substances for which the package 
has been designed.  Casks can be licensed for unilateral or multilateral use but countries 
are not obliged to accept certifications for unilateral use.   
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Casks transported within IAEA member countries, including Canada, must, at a 
minimum, comply with the requirements set down by the IAEA.  This means that the 
design of Type B casks must satisfy stringent design criteria established by the IAEA to 
protect the public, workers and the environment.  The compliance of a cask design with 
the criteria can be demonstrated by analysis, testing or a combination of the two.  
Normally, tests are simulated using scale models of the casks (such as one-quarter size) 
because the smaller models can be handled more easily and are more cost-effective.  The 
scale models properly simulate what would happen to an actual size cask.  Casks that are 
used in these tests are never reused for actual transport.   
 
Spent nuclear fuel is transported in Type B casks.  Type B casks are typically made from 
forged steel with walls several inches thick.   They are usually cylindrical and can weigh 
25 tonnes (truck casks) to100 tonnes (rail cask).  The largest casks typically carry around 
5 tonnes of spent fuel.  Shock absorbers are placed on either end of the casks during 
transport to limit the impact forces in the event of an accident.   
 
The IAEA requirements involve successive tests of the cask’s ability to withstand impact, 
fire and immersion.  Impact is tested through a drop test where the cask must survive a 
drop of nine meters (30 feet) onto an unyielding surface at a temperature set by the 
regulatory body, typically in the region –20°C to –40°C.  Because the surface is 
unyielding, i.e. reinforced concrete, the test simulates impacts of much greater impact 
velocities onto yielding surfaces such as rock and soil.  The cask must also survive a 
punch test where it is dropped from 1 meter (3 feet) onto a steel bar (which acts like a 
spike).   
 
Next, the cask must maintain its integrity in an all-engulfing fire at 800°C (1475°F) for 
thirty minutes.  “All-engulfing” means that the minimum temperature experienced by any 
part of the cask during the thirty minutes is 800°C.  It does not mean the same as 
“temperatures reaching 800°C”.  While some fires resulting from actual transportation 
accidents have reached higher temperatures and burned for longer, such as the Baltimore 
Howard Tunnel railroad fire, analyses have shown that spent fuel casks would have 
survived these situations without releasing radioactivity.  Fires move (consuming fuel and 
oxygen) and the hottest parts of fires therefore do not remain in one place for long 
periods of time.   
 
Next, the cask must survive an immersion test in 200 meters of water for eight hours.  
Analyses by designers have shown that Type B casks can withstand immersion under 
several thousands of meters of water.   
 
The success of the Type B tests is reflected in the unparalleled level of safety achieved in 
many countries over the last forty years when transporting spent fuel.  There has never 
been an accident anywhere that has involved the release of dangerous levels of 
radioactivity from a Type B cask in thousands of spent fuel shipments.   
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Regulators and operators have publicly authenticated the IAEA tests by performing 
realistic demonstrations of the ability of actual casks to withstand accidents.  In the 
United Kingdom, the Central Electricity Generating Board staged a mock accident in 
1984 in which a cask was placed on a railway line in its most vulnerable position.  A 
locomotive with two carriages was driven into the cask at 100 mph.  The cask maintained 
its integrity, receiving only superficial damage, whereas the train was completely 
destroyed.  As spectacular as this demonstration was, the impact forces received by the 
cask were only around one-third of those experienced with the IAEA drop test because 
the train was a yielding object that crumpled and broke up on impact with the cask.  In a 
special fire test, a cask maintained its integrity when placed over burning fuel for 90 
minutes at temperatures reaching 1400°C on the surface of the cask.   
 
In the United States, similar demonstrations have been performed driving a truck carrying 
a spent fuel cask at 100 mph into a concrete wall and even accelerating a cask into a 
target using rocket engines.  The United States Nuclear Regulatory Commission (NRC) is 
currently proposing new demonstrations of the strength of cask designs prior to 
shipments to the repository at Yucca Mountain, Nevada. 
 
These regulatory tests and real-life demonstrations provide considerable assurance that 
the casks can maintain their integrity in severe accident conditions without releasing their 
radioactive contents.   
 
International Maritime Organization 
 
A dedicated fleet of purpose-built nuclear fuel carriers was first developed and built by 
Pacific Nuclear Transport Limited (PNTL) in the 1970s and 1980s to ship spent fuel from 
Japan to the United Kingdom and France.  PNTL is owned by British Nuclear Fuels plc 
(BNFL), Cogema (France) and Japanese companies.  The PNTL fleet set a standard for 
design that was subsequently used as the basis for IMO regulations that became 
mandatory in 2001.   
 
The IMO’s Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High 
Level Wastes in Flasks On Board Ships (INF Code) establishes standards for the design 
of ships carrying nuclear material according to the type of material being transported.   
The categories established by the INF Code are: 
 

• INF1 vessels can carry radioactive cargoes within specified low levels of 
radioactivity 

 
• INF2 vessels can carry spent fuel or high level waste within specified levels of 

radioactivity 
 

• INF3 vessels can carry spent fuel, high level waste and plutonium with no 
restriction on the aggregate radioactivity of the material 
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As with the licensing of spent fuel casks, national regulatory authorities must license 
vessels for transportation of spent fuel by carrying out a survey of the ship’s “structure, 
equipment, fittings, arrangements and material”.  The Code establishes standards for 
damage stability, fire safety measures, temperature control of cargo spaces, structure, 
cargo securing arrangements, electrical power supplies, radiological protection, 
management and training, shipboard emergency plans and notification in the event of an 
accident involving the radioactive cargo.   
 
PNTL currently operates three INF3 vessels, the Pacific Teal, Pacific Sandpiper and 
Pacific Pintail.  Two other ships, the Pacific Swan and Pacific Crane have been recently 
retired by PNTL.  These ships are small compared to other cargo vessels and are very 
maneuverable.  They are 104 meters in length, 16 meters wide and have a deadweight 
tonnage of 3775 tonnes.   
 
PNTL’s INF3 vessels have a series of safety measures not found on other cargo carriers: 
 

• Each ship has a double hull and double bottom.  The double hull is designed to 
provide protection against collisions and extends to 20 per cent of the vessel’s 
beam (width) on each side.  It is augmented with reinforced steel plates weighing 
400 tonnes.   

 
• The ships have enhanced buoyancy to ensure they remain afloat even in extreme 

circumstances.   
 

• There are dual navigation, communications and monitoring systems.  If cabling 
were damaged by an accident on one side of the vessel, these systems would still 
be able to operate using duplicate power cabling on the other side of the vessel.   

 
• The ships have satellite navigation and tracking. 

 
• The ships have twin engines and propellers.  If power is lost from one engine, the 

second engine can generate a speed of around ten knots. 
 

• There is additional fire fighting equipment including a multi-zone and multi-
sensor fire detection system and halon gas fire suppression system.  If necessary, 
each of the holds could be filled with sea water to put out a fire or provide a shield 
against radiation.   

 
• The ships have redundant electrical generating capacity in the bow and stern so 

that fire fighting equipment could be powered even in extreme circumstances.   
 

• The ships have bow thrusters to provide optimum maneuverability in ports. 
 

• The spent fuel casks are bolted to the ship’s structure in the cargo holds. 
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The PNTL ships are regarded by maritime experts as some of the safest ships on the seas.   
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5 INTERNATIONAL EXPERIENCE 
 
Over the last 30 years, there have been around 500 shipments of spent fuel in Canada.  
These have generally been small quantities of spent fuel and have been part of research 
programs.  There are also thousands of shipments of radioactive material in Canada each 
year, mainly for non-nuclear purposes (medical, industrial, etc.).   
 
While spent nuclear fuel has not been transported widely in Canada, governments, 
regulators and commercial organizations around the world have extensive experience 
transporting radioactive and nuclear materials, and with regulating it for safety and 
security. Government and independent experts in many countries, most notably the 
United States, the European Union and Japan, as well as the IAEA, have also regularly 
examined and researched safety issues concerning radioactive material transport.  A large 
body of technical data exists which can be drawn on by regulators, utilities, politicians 
and the public in preparing any future plans for the transportation of spent fuel.  This 
information has direct application and relevance because Canada, as a member of the 
IAEA, is obliged to meet the same level of international standards that have been the 
subject of this study and analysis.   
 
Whatever decisions are subsequently taken regarding the management of spent fuel in 
Canada, more shipments of spent fuel and other highly radioactive material will take 
place in other countries in the foreseeable future.  Canada has 17 operating commercial 
nuclear reactors with a generating capacity of around 12,000 MW.  These supply around 
13 per cent of the nation’s electricity.  While a spent fuel management/ transportation 
program is certainly required in Canada, the quantities of fuel that will be moved are 
substantially less than in countries like the United States, Japan and France. 
 
United States 
 
Each year in the United States, there are some 2-4 million shipments of radioactive 
materials.  With 103 commercial nuclear reactors producing around 20 per cent of its 
electricity, the United States is the largest producer of nuclear power in the world.   
 
Spent fuel is currently stored at reactor states throughout the United States but is 
scheduled to be moved to a national repository at Yucca Mountain, Nevada in the future.  
Since 1964, there have been 3,000 shipments of spent fuel on United States highways and 
railroads, covering a total of 1.7 million miles.  Today there are around twenty shipments 
of spent fuel each year in the United States, chiefly undertaken by road by specialized 
trucking companies.  If the Yucca Mountain repository operates as currently planned, this 
repository will receive spent fuel from 72 commercial sites and five Department of 
Energy sites.  The transportation program is scheduled to continue for 24 years.  In this 
program, 40,000 tonnes of spent fuel will be transported across the United States. 
 
Spent fuel is also shipped by sea from various countries under a U.S. Department of 
Energy program to store U.S.-origin uranium based fuels from foreign research reactors 
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at its Savannah River facility in South Carolina.  These are mainly highly enriched 
uranium fuels. 
 
In addition, the United States has considerable experience in transporting weapons 
material, such as plutonium and highly enriched uranium. 
 
Europe 
 
The European Union is home to some of the largest users of nuclear energy, including 
France, Germany, the United Kingdom and Belgium.  France has 58 commercial nuclear 
reactors generating 63,000 MW of electricity.  Electricité de France (EdF), the French 
national generating company, ships approximately 200 spent fuel casks each year to the 
La Hague reprocessing facility.  Most of the casks are transported by rail to a dedicated 
terminal at Valognes and continue by road to the La Hague complex 30km away.   
 
Spent fuel is also transported extensively by rail within the United Kingdom from the 
smaller number of British nuclear reactors to the Sellafield reprocessing facility in north 
west England.  Some of the transports pass through urban area, such as Willesden in 
London.  Approximately 600 spent fuel casks (including empty casks) are transported by 
rail each year between Sellafield and UK reactor sites, covering around 350,000 cask 
miles.   
 
Spent fuel has been shipped internationally since 1966, when Italian spent fuel was first 
shipped to the Sellafield reprocessing facility in England.  Today, the largest movements 
of spent fuel between countries in Europe are from German reactor sites to La Hague and 
Sellafield.  Casks of vitrified waste, with similar levels of radioactivity as spent fuel, are 
returned to the Gorleben site for storage.  Spent fuel is transported through several major 
cities by rail, including Hamburg, Bremen, Bonn and Karlsruhe.  To get to Sellafield, 
spent fuel is transported by rail to Dunkirk where it is loaded onto either the European 
Shearwater (a small INF3 vessel) or the Atlantic Osprey (a refurbished roll-on roll-off 
vessel which is classified as INF2) and shipped to the English port of Barrow.  From 
Barrow, the spent fuel casks are moved by rail directly to the Sellafield reprocessing 
facility some 40 miles away.   
 
Sweden ships spent nuclear fuel by sea on the MS Sigyn from reactor sites to a central 
storage facility.  Australia sends spent fuel from the Lucas Heights research reactor to 
France for reprocessing.  France has shipped spent fuel on the INF2 vessels Bougenais 
and Fret Moselle.   
 
Japan 
 
Nuclear power is an important part of Japan’s economy.  It accounts for approximately 
35 per cent of Japan’s electricity generation and is projected to account for 41 per cent by 
2011.  Japan has 52 reactors with a total output of 45, 742 MW.   
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To establish nuclear power as a domestic resource, Japan has followed a policy of 
recycling nuclear fuel.  This has involved shipping spent fuel from reactor sites to 
reprocessing facilities in Europe.  These shipments involve transportation by road to 
reactor ports, then purpose-built vessel to receiving ports in England and France, and rail 
and road to the reprocessing sites.  The vitrified high-level waste and mixed oxide fuel is 
returned from Europe to Japan.  The early sea shipments of spent fuel were on chartered 
vessels, beginning in 1969. Since then, over 160 shipments have been successfully 
completed between Japan and Europe without any incident involving the release of 
radioactivity.  Some of these shipments have been the focus of attention from anti-nuclear 
advocacy groups. 
 
Japan is currently constructing its own reprocessing facility at Rokkasho-mura, which is 
scheduled to become fully operational in 2005.  Nuclear Fuel Transport (NFT) of Japan 
already ships spent fuel from reactor sites to the port of Mutsu Ogawara from where it is 
transported to storage ponds at Rokkasho-mura.   
 
In total, almost 10,000 tonnes of spent fuel has been shipped by sea from Japan to the 
United Kingdom and a similar amount has been shipped to France by sea and land.   
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 6 ACTUAL INCIDENTS AND ACCIDENTS 
 
The nuclear industry has been transporting radioactive materials since the 1960s and 
therefore has considerable experience in dealing with potential and actual accident 
situations.  Whereas there have been accidents involving the harmful release of other 
hazardous materials around the world in this period, the transportation of nuclear 
materials has been characterized by no major accidents.   
 
Comparisons of Hazardous Material Accidents 
 
With its location at the intersection of east-west world commerce, the Panama Canal is 
responsible for handling a large number of hazardous material shipments that have 
origins and destinations in other countries.  The Panama Canal Authority handles around 
12,000 shipments each year of which approximately one-third contain hazardous 
materials.  All vessels are inspected prior to transit of the Canal to ensure they meet 
international regulations.  A small percentage of the shipments carrying hazardous 
materials are carrying spent fuel or other radioactive materials.  In 1996, at a Special 
Consultative Meeting of the IMO, the Canal stated that: “The vessels whose cargo 
present the highest risk to the Panama Canal are… bulk carriers, such as LPG and 
gasoline tankers, and those with over 5 tons of… (explosives) aboard”.   
 
This is borne out by records of hazardous material accidents by category in the United 
States.  As can be seen from the chart below for domestic shipments in the United States, 
accidents involving non-radioactive hazardous materials are more frequent and have 
more significant consequences than those involving radioactive materials.   
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Surface Transportation of Spent Fuel 
 
All shipments of spent fuel involve some element of land transportation even if it is a 
short road journey from a nuclear reactor to a port facility or from a port facility to a 
reprocessing or storage site.   
 
Spent fuel casks are placed on trucks or special vehicles for road transport and on flatbed 
wagons for rail transport.  Like other packages that are transported on flatbeds, the 
packages are typically covered to minimize exposure to the weather.  Trains normally 
pull several spent fuel casks at a time and therefore offer an economic and practical 
advantage over trucks.  National regulations may place particular requirements on 
operators.  For example, United States regulations stipulate separation requirements for 
hazardous cargoes in freight trains.    
 
(i) U.S. Incidents and Accidents 
 
In 1971, the United States established a Radioactive Materials Incident Report (RMIR) 
database to track all accidents and incidents involving radioactive materials.  An analysis 
in 1997 of actual incidents and accidents that occurred in the United States since the 
database was set up revealed no release of radioactive material from Type B packages.   
 
The analysis identified 1,828 transportation events (accidents, handling accidents and 
incidents) involving radioactive materials such as industrial gauges, teletherapy sources, 
low level radioactive materials, nuclear industry material and radioisotopes.  The 
majority of these involved industrial and Type A packages.   
 
In this 26-year period, 90 Type B packages were involved in a total of 59 accidents in the 
U.S.  None of the Type B packages released their radioactive contents.  Seven of these 
accidents involved spent nuclear fuel (three during rail transport and four during highway 
transport) and all but one resulted in only trivial damage to the cask.  The most severe 
accident occurred on 8 December 1971 in Tennessee when a truck rolled over on U.S.-25 
and the spent fuel cask came off its trailer.  However, there was no release of radioactive 
material.   
 
(ii) U.S. Hazardous Materials Accidents Not Involving Spent Fuel 
 
Serious accidents involving non-nuclear hazardous material have, of course, occurred.  
These accidents inevitably cause the  “what if…?” question to arise.  What if spent 
nuclear fuel had been transported in a particular rail derailment or tunnel fire?  In April 
2003, a paper was published by the United States Department of Energy National 
Transportation Program that examined twelve actual accidents that took place in the last 
twenty years.  The accidents had been cited by the State of Nevada, which had suggested 
that the integrity of spent fuel casks might have been compromised if spent fuel had been 
involved because of the severity of the accident conditions.   
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In each case it was shown that, despite the severity of each accident, the integrity of spent 
fuel casks would have been maintained.   The experts compared the accidents with 
United States test requirements, which are based on the IAEA tests.  United States 
regulations for separating hazardous cargoes in freight trains would have eliminated fire 
exposures in the railroad accidents. 
 
The accidents studied were: 
 

• The collapse of a suspended span of Interstate Route 95 Highway Bridge over the 
Mianus River, Greenwich, Connecticut on 28 June 1983.  Four vehicles plunged 
70 feet into the water, which was about eight feet deep at the time.  The impact of 
a spent fuel cask in this accident would have been less than one-third of the 
impact required by IAEA regulations.   

 
• The collapse of New York Thruway (I-90) Bridge over the Schoharie Creek near 

Amsterdam, New York on 5 April 1987.  Five vehicles fell about 80 feet into 
waters that were about 30-feet deep.  The impact of a spent fuel cask in this 
accident would have been about one-third of the regulatory impact.   

 
• The collapse of the Cypress Street Viaduct of the Nimitz Freeway in Oakland, 

California as a result of the Loma Prieta earthquake on 17 October 1989.  The 
most severe circumstances would have occurred if the entire weight of the 
transverse beam of this two-level structure had impacted the hypothetical spent 
fuel cask.  The cask is able to sustain an impact approximately twice as great as 
that from this type of accident.   

 
• A collision between a tractor-semi-trailer transporting ten 2,000-pound bombs and 

an automobile resulting on fire and explosions at Checotah, Oklahoma on 4 
August 1985.  A crater 27 feet deep and 35 feet wide was caused in the roadway.  
The explosive force was not sufficient to have caused a spent fuel cask on an 
adjacent truck to fail and the duration and size of the fire would not have damaged 
the cask thermally.   

 
• A tanker trailer accident and resulting explosion in Memphis, Tennessee on 23 

December 1988.  The ignition of the tanker’s 9,500 gallons of liquid propane 
blew the trailer truck a large distance, killing eight people.  A hypothetical spent 
fuel cask at the scene would have been subjected to conditions lower than those 
required by the regulatory tests.   

 
• A release of yellow phosphorous and molten sulfur following the derailment of a 

train in Miamisburg, Ohio on 8 July 1986.  While a phosphorous fire continued 
for several days, the temperatures were well below that required for spent fuel 
casks to maintain their integrity.   

 



 21

• A collision and derailment of locomotives leading to a hazardous materials 
release at Helena, Montana on 2 February 1989.   A spent fuel cask would have 
been able to sustain the impact of the collision and the resulting fires.  Significant 
structural damage of the cask was not likely to have occurred because of its robust 
design.   

 
• The derailment of a freight train and butane fire in Akron, Ohio on 26 February 

1989.  A hypothetical spent fuel cask placed near the leaking cars would have 
been subjected to lower heat input than is required for the regulatory tests.   

 
• Train derailment and later fire at San Bernadino, California, May 1989.  The 100 

mph derailment into soft soil would not have led to a release of radioactive 
material to a hypothetical spent fuel cask and no train was involved in the 
subsequent fire.   

 
• Freight train derailment and release of hazardous materials near Freeland, 

Michigan on 22 July 1989.  Flammable materials (acrylic acid, 
trimethylchlorosilane and naptha) burned for several days.  The length of the 
naptha fire, which would have produced the most significant fire threat, was not 
recorded.  Even assuming that it lasted for five hours (the maximum possible in 
the circumstances) no significant release of radioactive material from a spent fuel 
cask would have resulted.   

 
• A train collision near Cajon, California on 14 December 1994.  The impact would 

have been approximately one-third of that required by the regulatory tests.   
 

• Freight train derailment near Cajon Junction, California on 1 February 1996.  The 
impact would have left a spent fuel cask intact and a fire would not have led to 
cask failure.   

 
In each case, a harmful release of radioactivity would not have occurred, even where the 
authors make the most pessimistic assumptions of what might have happened to a 
hypothetical spent fuel cask.  The Nuclear Regulatory Commission has also completed an 
analysis of the 2001 Baltimore Howard Street tunnel fire in which there were sustained 
temperatures of 1000°F, and concluded that exposure of a transportation cask would not 
have resulted in a radioactive release. 
 
(b) Maritime Transportation of Spent Fuel 
 
In nearly forty years of sea shipments of spent fuel, there have never been any accidents 
involving a release of radioactivity.  PNTL is the world’s leading transporter of spent fuel 
by sea and has safely transported 4,000 casks and covered 4.5 million miles.   
 
The only recorded report of an accident involving a spent fuel cask on a ship occurred on 
17 December 1991 during unloading of a PNTL ship in Cherbourg, France due to a 
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malfunction of the shore-based crane.  The gearing of the crane winch broke as a spent 
fuel cask was being removed and it fell onto the deck of the ship.  A few of the cooling 
fins on the outside of the cask were damaged but the containment of the cask was 
maintained.   
 
There have been maritime accidents involving other nuclear and radioactive cargoes.  On 
25 August 1984, the French freighter the Mont-Louis, traveling to Russia, was rammed 
by a ferry 15 km off Ostend and sank on a sand bank at a depth of 15 meters.  The Mont-
Louis was carrying 30 Type 48Y industrial containers of uranium hexafluoride, all of 
which were recovered over a period of 3 weeks.  None of these containers – which were 
industrial packages – had leaked and there was no external contamination.  One container 
had a damaged valve that had resulted in the ingress of about 50 liters of water. 
 
In 1997, the container ship Carla sank in heavy seas off the Azores.  The Carla was 
carrying three biological irradiators containing sealed caesium-137 sources in small Type 
B packages.  The vessel sank in 3,000 meters of water and, since the packages were 
considered to present no radiological hazard, it was decided not to recover them.   
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7 RISK ASSESSMENT AND IMPACT ASSESSEMENT 
 
The IAEA requirements have been established to protect the public, workers and the 
environment from plausible accident scenarios.  The safety record that has, in turn, been 
established by these requirements over forty years compares favorably with that of the 
shipment of all other hazardous materials.   
 
No activity can be undertaken with complete mathematical one hundred per cent safety.  
At the very least, it is always possible to imagine a highly exceptional event, such as a 
meteor strike, or an unusual sequence of events, that could affect the safety of a particular 
operation, be it the shipment of spent fuel, the shipment of other hazardous cargoes – or 
even taking a walk.  No hazardous material would ever be transported if operators and 
regulators were directed to eliminate the risk of all accidents, however implausible they 
might be.   
 
Regulators refer to the levels of protection for radioactive materials transport within a 
system known as “defense in depth”.  Operators more usually refer to this concept as 
“safety in depth”.  It refers to the series of independent barriers that protect workers, the 
public and the environment from a release of radioactive materials.   
 
As is the case with other hazardous material shipments, values of probability and 
consequence can be calculated for the series of events that must occur for a hazard to 
people to arise.  From the point of view of risk assessment, it is inappropriate to simply 
ask, “What would happen if radioactive material escaped from a cask of spent fuel 
following an accident?” because this ignores all the measures that are taken to prevent 
such an occurrence.  We cannot assume without justification that a series of events will 
happen (i.e. assign it a probability of one), or that it could well happen.   
 
The IAEA conducted a coordinated research project (CRP) from 1995-1999 to study the 
“Severity, probability and risk of accidents during maritime transport of radioactive 
material”.  The objective of the project was to determine whether the IAEA regulations 
took adequate account of accidents at sea by assessing: the severity of accidents and their 
expected frequency; the impact of fire at sea; and the adequacy of the IAEA requirements 
for sea transport.  The CRP evaluated two severe accidents for a ship carrying nuclear 
material.  The first was a collision at sea that sinks the struck ship and leads to the loss of 
a spent fuel cask.  The second was a collision leading to the double failure of the 
transport cask and a fire that spreads to the hold carrying the spent fuel that burns at 
sufficiently high temperatures and for long enough for material to escape.   
 
In evaluating these scenarios, the CRP calculated or identified the probability of 
individual events occurring that had to take place for the overall event to occur (building 
an event tree).  A probability value is first derived for a ship collision at sea.  The chance 
of the struck ship being the one carrying the spent fuel is one in two, a probability of 0.5.  
The ship could be struck at three separate points – near the bow, stern or midships.  The 
probability of each of these is one in three – 0.33.  Since all ships transporting spent fuel 
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carry the casks in the holds in this area, the probability of a cask being positioned 
midships is 1.  And so the process continues, calculating and assigning probability values 
to each individual event.  By multiplying the probability values for each event in the tree, 
the overall probability of a particular type of severe accident occurring can be calculated. 
 
The CRP figures are set out in the table below, extracted from the final report: 
 

 
 
The probabilities in the two scenarios examined were calculated as being of the order 10-6 
and 10-13 respectively.   
 
Because of the protective measures that are required to be taken when spent fuel is 
transported, the probability of an accident occurring that is of sufficient magnitude to 
cause a release of radioactive material has been determined by several other detailed 
analyses to be very low.    
 
When considering the risk of a severe accident, it is also important to consider the 
potential consequences.  Risk is properly defined as the consequence of an event 
multiplied by the likelihood of it occurring.   
 
Spent fuel consists of bundles of fuel rods that are designed to survive the extreme 
temperatures of a nuclear reactor.   The contents of the spent fuel casks will not readily 
disperse into the environment.  For there to be a release of radioactive material into the 
air, onto land or in water, the cask and the fuel rods inside would have to be damaged.   
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The impact of a release in water has been closely examined in several reports.  Japan 
ships spent fuel along its coastline from reactor sites to the Rokkasho-mura reprocessing 
facility.  The Central Research Institute of Electric Power Industry (CRIEPI) of Japan has 
produced an analysis of what would happen if a spent fuel cask was submerged in coastal 
waters at a depth of 200 meters, its seal was broken, and the cask was deliberately not 
recovered.  In this case, there are two ways in which an individual might receive a 
radiation dose.  The first is by close proximity to the package and the length of time spent 
there.  In this example, it is very unlikely that any member of the public would be in the 
vicinity of the package.  The second mechanism is the food chain, with the dose received 
related to factors such as the rate at which nuclides are released into the sea.  In these 
circumstances, CRIEPI calculated maximum dose rates to members of the public that are 
a fraction of those received from natural background radiation.   
 
Considering the issues of probability and consequences, the IAEA coordinated research 
project final report stated that, “Since these accidental exposures augment background 
doses negligibly and are also quite improbable, accidents during the maritime transport of 
RAM [Radioactive Material] in Type B irradiated nuclear fuel or VHLW [Vitrified High-
Level Waste] packages would seem to be of little concern.”   
 
The report concluded that: “Since the probabilities of severe ship collisions and severe 
ship fires are small and the individual radiation doses that might result should such a 
collision or fire occur are smaller than background doses, the risks of maritime transport 
in Type B packages of highly radioactive material such as irradiated nuclear fuel, vitrified 
high level waste and plutonium are very small.”   
 
Professor H. W. Lewis, a former Chairman of the United States NRC Risk Assessment 
Review Group, stated with regard to sea shipments of vitrified high level waste that, “An 
accident of any kind is unlikely to happen… and the environmental damage done by any 
conceivable accident would be thousands of times less than that done by a single oil 
spill.” 
 
These conclusions with respect to sea shipments are in line with those of other studies, 
including other modes of shipment.  In 1977, the U.S. Nuclear Regulatory Commission 
(NRC) completed what is referred to as its baseline study of spent fuel transportation 
risks called, “Final Environmental Statement on the Transportation of Radioactive 
Materials by Air and Other Modes”.  This led the NRC to conclude that the regulations in 
place were adequate to protect the public.   
 
In 1987, the NRC sponsored a Modal Study that assessed the level of safety provided by 
different certified package designs during rail and highway transport.  The  “Shipping 
Container Response to Severe Highway and Railway Accident Conditions” paper 
concluded that, “When considering real cask capabilities to withstand thermal loading 
conditions beyond the regulatory ones, approximately 99.4% of the truck and rail 
accidents would result in negligible radiological hazards which are less than those 
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implied by [the] regulations…an additional 0.4% of both highway accidents and railway 
accidents could result in radiological hazards near the regulatory limits.”   
 
The NRC has now recalculated the risk results for rail and highway transportation of 
spent fuel using modern computer technology which has allowed researchers to be more 
realistic about what could happen and predict the effects of impact and fire scenarios 
more accurately.  This has dramatically reduced the calculated risk levels from the 
already low levels previously estimated. 
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8 SECURITY REQUIREMENTS 
 
During forty years of transportation, there has never been an attempt to illegally procure 
spent fuel, or to attack a shipment of spent fuel, anywhere in the world.  Nevertheless, the 
question arises of what physical protection should be employed in Canada to protect 
spent fuel from either being stolen or from being used in a deliberate act of sabotage 
while it is being transported.    
 
The IAEA has produced guidelines for the physical protection of different types of 
nuclear material when it is in use, in storage and being transported.  The IAEA’s “The 
Physical Protection of Nuclear Material and Nuclear Facilities” was first published in 
1972 and, like the requirements for transporting materials, the recommendations are 
regularly reviewed and revised.  They are used by governments in member countries as 
the basis for national procedures and requirements.  The most recent document is 
INFCIRC/225/Rev.4.  The Convention on the Physical Protection of Nuclear Material 
(1980) also obliges parties to make specific arrangements and meet defined standards of 
physical protection for movements of nuclear material.   
 
The IAEA recognizes that transport is probably the part of the nuclear industry most 
vulnerable to the unauthorized removal of material and acts of sabotage.  It places nuclear 
material into one of three categories according to the possibility that unauthorized 
removal “could lead to the construction of a nuclear explosive device by a technically 
competent group”.  Thus international shipments of plutonium and MOX fuel are given 
the highest Category 1 rating.  Spent fuel is Category 2 material for international 
transport but member states can assign different categories for domestic transport.  One 
of the major distinctions between the handling of Category 1 and Category 2 material for 
transportation is that armed guards are specified for the former but not the latter. 
 
In Europe, spent fuel is protected in line with the IAEA recommendations when it is 
transported.  Guards, armed or otherwise, are not utilized for movements by road, rail or 
sea.  Armed guards are used for shipments of plutonium, mainly within France, and 
Mixed Oxide (MOX) fuel.  For sea shipments of MOX fuel from Europe to Japan, two 
armed PNTL ships, the Pacific Teal and Pacific Pintail, travel together providing mutual 
support.  An undisclosed number of armed officers from a police force specially 
dedicated to the policing of UK nuclear establishments travel on the ships in addition to 
the regular crew.  The independent nuclear regulator in the United States, the Nuclear 
Regulatory Commission (NRC), requires spent fuel shipments to be protected by armed 
guards during transportation through heavily populated areas.  These requirements 
exceed the recommendations set down by the IAEA.   
 
In general, hazardous material is not an appealing target for thieves because it is difficult 
to handle and has relatively little financial or practical value.  A spent fuel cask is not an 
attractive target for theft for a number of additional reasons.  First, from a practical 
perspective, a spent fuel cask is too unwieldy to move quickly to a secure location.  
Second, the cask is sealed and heavy specialized equipment is necessary to remove its lid.  
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Since the spent fuel is highly radioactive, the cask would have to be opened in carefully 
controlled conditions.  Third, during and after removal from the cask, the spent fuel 
would also need to be handled within a highly protective environment.  This would 
require management by individuals skilled and knowledgeable enough to handle spent 
fuel safely.  Fourth, any attempt to use the spent fuel for terrorist activities (such as the 
production of a “dirty bomb”) would be extremely difficult.  A “dirty bomb” could be 
more readily manufactured from radioactive materials procured in other ways.  Finally, 
compared to other hazardous substances, shipments of spent fuel take place relatively 
infrequently.   
 
If a cask is the subject of a terrorist attack that aims to sabotage the spent fuel inside, the 
protective measures that are designed to protect the public and environment in the event 
of a severe accident would also provide considerable protection.  A large explosive 
charge would be necessary to breach the containment of the cask.  Even if this is 
achieved, a dangerous disbursement of radioactive materials will not necessarily occur.  
 
In the United States and in Europe, experts have considered the effect of a High Energy 
Density Device (HEDD) penetrating a spent fuel cask.  The United States Department of 
Energy evaluated the potential consequences of a severe hypothetical sabotage attack for 
its Draft Environmental Impact Statement (DEIS) for the Yucca Mountain repository 
project.  While it is not possible to predict the nature of sabotage events should they 
occur, the U.S. has tested different types of HEDD against steel target plates.  Its 
findings, which are consistent with similar tests carried out in Europe, identify the 
greatest penetration coming from an HEDD which has its explosive energy concentrated 
in a very slender penetrator moving at speeds in excess of 2 km/s.  The DEIS calculated 
the possible impact of two acts of sabotage, one on a rail cask and the other on a truck 
cask, and estimated lower consequences for the larger rail transport cask.   
 
There are many hazardous and non-hazardous substances being transported much more 
frequently every day that would offer more attractive sabotage options for terrorists than 
spent fuel casks.  In their paper examining the sabotage question, the Sandia National 
Laboratories experts wrote, “There is no reason to believe that sabotage of radioactive 
material shipments constitutes an imminent threat to the public health and welfare in the 
U.S. at the current time.”   
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9 EMERGENCY PLANNING 
 
After forty years of experience, there has never been an accident involving the transport 
of spent fuel that has led to a release of radioactive material anywhere in the world.  
Despite the best procedures, accidents happen when materials are transported.  In the case 
of most hazardous materials, an accident can instantaneously cause severe injuries and 
damage to the environment.  Radioactive materials such as spent fuel are deliberately 
packaged for transport in a way that is designed to prevent such a situation from 
occurring.   
 
As with the transport of other hazardous material, it is prudent to have plans in place to 
respond to an accident involving spent fuel, such as a collision or train derailment.  With 
proper planning, teams will be able to respond quickly and control or mitigate any 
radiological hazard or ensure that radiation safety is maintained if there has been no 
release of material.   
 
The IAEA has produced a Safety Guide to assist national governments with planning for 
emergencies during the transportation of radioactive material.  “Planning and Preparing 
for Emergency Response to Transport Accidents Involving Radioactive Material” 
suggests which responsibilities should fall on the national co-ordinating authority, 
governments, consignors and carriers, and the site response team.   
 
One example of the difference between emergency planning for spent fuel and other 
hazardous materials can be illustrated by considering oil tankers and INF3 class vessels.  
There are many examples of oil tanker accidents and large oil slicks that are difficult for 
emergency teams to contain.  An INF3 class vessel carrying spent fuel should be able to 
contain an emergency involving a cask by using the systems on board the ship.  If 
required, an emergency team that includes radiological experts is on 24-hour standby to 
travel to the vessel and direct emergency measures.  There is no reliance on emergency 
personnel from countries closest to the accident.  Shippers have also designed additional 
measures to contain accidents.  If necessary, the hold of a PNTL vessel could be 
deliberately flooded to contain an incident involving the release of radioactive material 
from a cask, and the ship could still navigate at sea.   
 
Although it is not a regulatory requirement, PNTL vessels are also equipped with a sonar 
system that can operate in depths over 6,000 meters.  This can relay to surface teams the 
depth and angle of a sunken vessel, whether the vessel is distorted or broken, whether the 
hatch covers are in place, and the radiation level and temperature in each hold.   
 
Shippers of spent fuel in different countries undertake regular emergency exercises with 
their emergency services to test responses to a real accident.  These may range from 
desktop exercises to those involving a simulated accident, such as a collision.   
 
If an accident does occur, a further question is how to communicate to the public its level 
of seriousness.  The International Nuclear Event Scale (INES) of the IAEA is designed to 
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communicate this information for a particular unplanned event at a nuclear facility.  It 
takes account of factors such as whether and what amount of radioactivity was released 
and the consequences that could result.  It operates for all incidents and accidents from 
nuclear facilities in IAEA member countries.  The levels of events run from 0 to 7 as 
follows:   
 
Level 7.  Major Accident (Major Release) 
Level 6.  Serious Accident (Significant Release) 
Level 5.  Accident with Off-Site Risk (Limited Release) 
Level 4.  Accident without Significant Off-Site Risk (Minor Release) 
Level 3.  Serious Incident (Very Small Release) 
Level 2.  Incident 
Level 1.  Anomaly 
Level 0.  No Safety Significance 
 
Because a transportation accident could take place in an urban area or many miles away 
from any kind of dwelling, the INES does not automatically translate to transportation 
operations.  The European Union has examined ways of applying the INES to 
transportation accidents.  In a paper sponsored by the European Commission Directorate 
General on Transport and Energy, authors from the French nuclear regulatory body, the 
IPSN (Institute de Protection et de Sûreté Nucléaire), modified the INES criterion and 
assessed the degree to which defensive barriers had been breached in a series of actual 
recent events.  The highest graded event identified in the study was the sinking of the MV 
Carla, the container ship that sank north of the Azores in 1997.  This was estimated at 
Level 3 by the French rating system.  However, since there was no release of radioactive 
material, this experimental system is not necessarily consistent with the one applying to 
nuclear facilities.  Moreover, the industry has often been slow at accurately grading 
events at land facilities at level 2 and above, often modifying the initial grading 
downwards after measurements of any release have been taken.  Further work can 
therefore be expected in this area.   
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10 RATIONALE FOR SHIPPING SPENT FUEL  
 
Approximately 1.5 million bundles of spent fuel are currently stored at Canadian reactor 
sites.  Canada is now investigating a long-term solution for disposing of spent fuel that 
may involve transporting it to a single purpose-built storage facility or a repository.  
Another possibility, which is considered unlikely, is to send some or all of the spent fuel 
overseas so that it can be reprocessed.  The recovered uranium and plutonium would be 
shipped back to Canada, as would the separated high-level waste which would be 
vitrified for long-term storage.   
 
A wide range of choices exist and the various options will be weighed against each other.  
Some of the choices involve complex technical and political judgments.  For example, if 
Canada elects to reprocess its fuel, it will have a smaller volume of reprocessed high-
level waste to store because vitrification reduces the total amount of high-level waste.  
On the other hand, some critics of reprocessing argue that this is an unattractive option 
because, by separating plutonium, a proliferation risk is created.  In addition, the costs of 
the reprocessing option are higher than those of storage and disposal.    
 
The transportation of spent fuel is an important factor in these considerations.  If it is 
accepted that the transportation of spent fuel can be achieved at very low levels of risk, 
there will be more flexibility over how spent fuel should be handled.  It means, for 
example, that the best location, based on geological and other technical and social factors, 
could be selected for the disposal of spent fuel even if it is some distance from the 
nuclear reactor sites themselves.   
 
Yucca Mountain Consultations 
 
Nevertheless, the experience in the United States suggests that extensive consultations 
with the public should be a part of the overall evaluation process for managing spent 
nuclear fuel.  Some of the variables in existing technical papers on spent fuel 
transportation (age of the spent fuel, types of cask, route scenarios, etc.) prepared by 
experts for the IAEA, United States and European countries may need to be modified and 
re-examined to take account of the actual circumstances found in Canada.   

The process in the United States for managing spent fuel in a centralized repository has 
been underway for over twenty years.  The Nuclear Waste Policy Act of 1982 and its 
amendments require or authorize the U.S. Department of Energy (US DOE) to locate, 
build and operate a deep, mined geologic repository and a storage facility and develop a 
transportation system that safely links them with U.S. nuclear power plants.  In July 
2002, the U.S. Senate approved the construction of the repository at Yucca Mountain, 
Nevada.  Yucca Mountain is located 100 miles northwest of Las Vegas and the repository 
is planned to operate from 2010.     

In 1999, the US DOE issued a draft Environmental Impact Statement (EIS), followed by 
a supplemental EIS in 2001, to provide decision-makers and the public with the 
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opportunity to consider and better understand the environmental impacts of the proposed 
repository. It addressed the public comments received and issued a Final EIS along with 
the site recommendation in 2002.  This reports that radiation exposures to the public will 
be well below both U.S. Environmental Protection Agency limits and natural background 
radiation levels and that the environmental impacts of transportation are small. 

As is already the case with spent fuel transportation in the United States, the packages 
used for moving spent fuel to Yucca mountain will have to be licensed by the U.S. 
Nuclear Regulatory Commission (NRC) and meet IAEA standards.  Spent fuel will be 
shipped along specified highway routes and/ or rail lines.  

At the end of 2003, the US DOE announced that its preferred rail option is to construct a 
320-mile branch line through the Caliente corridor, approaching Yucca Mountain from 
the north.  This would cost around $1 billion to construct.  Under the “mostly rail” 
transportation option, around 175 shipments would take place annually for 24 years.   

The US DOE is also considering a “mostly truck” option.  Highway shippers would 
require NRC approval for routes that would have to conform to U.S. Department of 
Transportation (US DOT) regulations, take the most direct interstate path and avoid large 
cities when a bypass or beltway is available.  Law enforcement, emergency response 
capability and secure facilities for emergency stops would also be checked.  US DOT 
regulations also require that the shipper notify the governor of each state on the 
transportation route seven days before a shipment takes place.  

Public Information 
 
In relative terms, materials that are more hazardous and more vulnerable to terrorist 
attack are transported much more frequently, and with less effective precautions, than 
spent fuel.  Yet more news articles are written about the dangers of nuclear transportation 
than about any other hazardous cargo and more “public” protest is directed at it than at 
the transportation of toxic chemicals, petroleum products and gases.   
 
There is no requirement for nuclear transporters to communicate widely to the public 
when they are shipping spent fuel, or to engage in “public relations”.  On the contrary, 
shippers are more likely not to wish to communicate any information for two reasons.  
First, IAEA security guidelines recommend restricting information about shipments to 
reduce the opportunity of an act of sabotage or attempted theft.  Second, the release of 
information about routes and timings can aid protesters who may be able to prevent or 
slow a movement of spent fuel if they know when it is leaving a reactor site and how it 
will be transported.  This causes logistical difficulties for transporters and may increase 
operating costs. 
 
In the opinion of this author, spent fuel transportation is the focus of greater critical 
media reporting and protests for two main reasons.  First, regional and local authorities in 
the area where the spent fuel is to be transported may object to the overall disposal plan.  
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For example, Nevada State opposes the use of Yucca Mountain as the site for the United 
States repository and, as part of a campaign to prevent its operation, criticizes the plans 
for transportation.  The rationale appears to be that if the shipments can’t take place, the 
repository will be unable to operate.  Regional/ local authority opposition may be a 
response to negative local public opinion about spent fuel disposal plans.  From the 
perspective of managing objections to spent fuel management, this observation suggests 
that there is considerable value in undertaking a genuine and detailed consultation with 
stakeholders during the entire process of deciding how to deal with spent fuel and during 
the operation of a repository.   
 
Second, there are many Non-Governmental Organizations (NGOs) that campaign to close 
the nuclear power industry as a whole, usually as one of several core objectives.  If 
nuclear materials cannot be transported, the nuclear industry will be unable to operate.  
Historically, those NGO campaigners and advocacy groups that have argued that spent 
fuel shipments are unsafe have shown little interest in public safety beyond the nuclear 
industry.  As has been detailed in this paper, the transportation of spent fuel 
internationally has an excellent safety record compared to that of other hazardous cargo.  
These groups largely ignore the transportation risks of other materials and display little 
knowledge or interest in them, claiming to be “experts” in only nuclear transportation. 
They usually refer to the possibility of a “catastrophic” accident, which naturally 
concerns people and attracts newspaper headlines.  There is no well-known international 
NGO that campaigns to reduce all risks in hazardous material transport irrespective of the 
nature of the cargo.  The motives of these anti-nuclear groups has to be considered when 
evaluating their arguments.   
 
Because of their common interests, regional authorities sometimes work with anti-nuclear 
advocacy groups against the transportation of nuclear materials in a symbiotic 
relationship that gives local officials and politicians the extra resources and campaign 
experience of the NGOs, while giving the groups the power and legitimacy that comes 
with working with government institutions.  This can create a powerful alliance of 
opposition encompassing legal activity, public relations and politics.  The regional 
authorities and advocacy groups have the incentive to oppose nuclear transportation 
whatever transport methods are used in order to achieve their aims, i.e. while they often 
campaign on safety grounds, there may be no level of safety that would satisfy them.   
 
Concluding Remarks 
 
Experience overseas over the last forty years shows that the transportation of spent fuel 
can be managed safely.  Spent fuel is shipped against a background of strict regulations 
and careful planning.  There are a number of extensive technical papers that support the 
conclusion that spent fuel transport is a low risk activity.   
 
The process is already underway in Canada to manage a range of technical and practical 
issues concerning the long-term management of spent fuel.  Officials may wish to 
consider some additional questions before spent fuel is transported as part of a spent fuel 
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management system:  Should dedicated trains be used?  Should fuel be transported in 
canistered form to reduce worker exposures and provide an extra layer of containment?  
Should dual-purpose casks be preferred over storage-only and transport-only options?  
What are the acceptable levels of incident free risk, i.e. risks to members of the public 
from the normal transportation of spent nuclear fuel, as opposed to the question of 
accidents?  The question of communications and public relations for nuclear 
transportation should also be addressed.  These and other questions will need to be 
carefully considered by Canadian officials in the future.   
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